SUMMARYPyTorch 中文官方教程 1.7学习 PyTorchPyTorch 深度学习:60 分钟的突击张量torch.autograd的简要介绍神经网络训练分类器通过示例学习 PyTorch热身:NumPyPyTorch:张量PyTorch:张量和 AutogradPyTorch:定义新的 Autograd 函数PyTorch:nnPyTorch:optimPyTorch:自定义nn模块PyTorch:控制流 + 权重共享torch.nn到底是什么?使用 TensorBoard 可视化模型,数据和训练图片/视频torchvision对象检测微调教程计算机视觉的迁移学习教程对抗示例生成DCGAN 教程音频音频 I/O 和torchaudio的预处理使用torchaudio的语音命令识别文本使用nn.Transformer和torchtext的序列到序列建模从零开始的 NLP:使用字符级 RNN 分类名称从零开始的 NLP:使用字符级 RNN 生成名称从零开始的 NLP:使用序列到序列网络和注意力的翻译使用torchtext的文本分类torchtext语言翻译强化学习强化学习(DQN)教程训练玩马里奥的 RL 智能体在生产中部署 PyTorch 模型通过使用 Flask 的 REST API 在 Python 中部署 PyTorchTorchScript 简介在 C++ 中加载 TorchScript 模型将模型从 PyTorch 导出到 ONNX 并使用 ONNX 运行时运行它(可选)前端 APIPyTorch 中的命名张量简介(原型)PyTorch 中通道在最后的内存格式(beta)使用 PyTorch C++ 前端自定义 C++ 和 CUDA 扩展使用自定义 C++ 运算符扩展 TorchScript使用自定义 C++ 类扩展 TorchScriptTorchScript 中的动态并行性C++ 前端中的 Autograd在 C++ 中注册调度运算符模型优化分析您的 PyTorch 模块使用 Ray Tune 的超参数调整模型剪裁教程LSTM 单词语言模型上的动态量化(beta)BERT 上的动态量化(Beta)PyTorch 中使用 Eager 模式的静态量化(beta)计算机视觉的量化迁移学习教程(beta)并行和分布式训练PyTorch 分布式概述单机模型并行最佳实践分布式数据并行入门用 PyTorch 编写分布式应用分布式 RPC 框架入门使用分布式 RPC 框架实现参数服务器使用 RPC 的分布式管道并行化使用异步执行实现批量 RPC 处理将分布式DataParallel与分布式 RPC 框架相结合